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ABSTRACT  

Intelligent Transportation Systems (ITS) generates massive amounts of traffic data, 

which posts challenges for data storage, transmission and retrieval. Data compression and 

reconstruction technique plays an important role in ITS data procession. Traditional compression 

methods have been utilized in Transportation Management Centers (TMCs), but the data 

redundancy and compression efficiency problems remain. In this report, the wavelet incorporated 

ITS data compression method is initiated. The proposed method not only makes use of the 

conventional compression techniques,but, in addition, incorporates the one-dimensional discrete 

wavelet compression approach. Since the desired wavelet compression is a lossy algorithm, the 

balancing between the compression ratio and the signal distortion is exceedingly important. 

During the compression process, the determination of the threshold is the key issue that affects 

both the compression ratio and the signal distortion. An algorithm is proposed that can properly 

select the threshold by balancing the two contradicted aspects. Three performance indexes are 

constructed and the relationships between the three indices and the threshold are identified in the 

algorithm. A MATLAB program with the name Wavelet Compression for ITS Data (WCID) has 

been developed to facilitate the compression tests. A case study on TransGuide ITS data was put 

into play and a final compression ratio of less than one percent on the trade-off threshold value 

shows that the proposed approach is practical. Finally, the threshold selection algorithm can be 

further tuned up utilizing Autoregressive model so that the quality of reconstructed data can be 

improved with a minor overhead of saving only a few parameters. 
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EXECUTIVE SUMMARY 

While the use of advanced technologies in transportation has been ongoing for many years, 

the creation of the ITS program has accelerated the pace of innovation and integration of 

technologies into the transportation system. The ITS program has brought new players into the 

transportation arena with interests in the application of technologies previously developed for 

defense, space and other fields. ITS data collection technologies have generated massive 

amounts of data to improve transportation system performance. More traffic management 

operators are considering the systematic retention of data generated by traffic monitoring 

devices. Numerous questions have been generated regarding ITS data storage and management. 

One of them, and probably the most intractable one, is the compression of ITS data. 

Among the most effective methods on image and video compression is the wavelet 

compression algorithm which presents prominent ability to compress almost any kind of signal 

data. The ITS data collected by various forms of equipment are mostly in numeric format that 

can be treated as a signal, and then wavelet compression techniques could apply. 

The goal of this research is to propose an ITS compression approach that includes both 

conventional compression methods and wavelet decomposition technique. To achieve this goal, 

three objectives need to be reached: First, an ITS data compression framework needs to be 

established and the methodology needs to be explained in the framework; second, a software 

program needs to be developed to put the methodology into work; and finally, a case study needs 

to be carried out to evaluate the methodology and test the program.  

In this research, the wavelet incorporated ITS data compression method has been proposed, 

and a MATLAB GUI program with the name WCID has been developed to facilitate the 

compression tests. Finally, a case study on TransGuide ITS data was put into play and a final 

compression ratio of less than one percent on the trade-off threshold value shows that the 

proposed approach is practical.  

Since the desired wavelet compression is a lossy algorithm, the balancing between the 

compression ratio and the signal distortion is exceedingly important. During the compression 

process, the determination of the threshold is the key issue that affects both the compression ratio 

and the signal distortion. 
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In this research, an algorithm is proposed that can properly select the threshold by 

balancing the two contradicted aspects. Three performance indexes RE, NZ and RR are 

constructed and the relationships between the three indices and the threshold are identified. 

Impact analysis of wavelet forms and decomposition levels to the compression ratios show that 

there is not too much difference in the selection of wavelet form. However, decomposition levels 

have significant impacts on the decomposition. Higher decomposition levels normally yield 

better compression ratios for the same threshold values.  

ITS data quality control could be incorporated in the wavelet compression approach. It is 

found that the result of the compressed ITS data have the effect of de-noising due to the nature of 

the proposed wavelet compression. Considering that these abnormal data are usually erroneous 

or inaccurate measurements, data quality control could be well included by recalculating those 

data in the wavelet decomposition. 

It is recommended that the compression processing speed should also be taken into 

consideration in order to meet the need of the increasingly surging ITS data. With more highway 

infrastructure put into use, the ITS data increase rate becomes overwhelming. A practical 

solution on ITS data compression must run faster on prevalent computers than the data-

generating speed to be feasible. 
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CHAPTER 1 

INTRODUCTION 

  The Intelligent Transportation System (ITS) adds information technology to transport 

infrastructure and vehicles, aiming to manage vehicles, loads, and routes to improve safety and 

reduce vehicle wear, transportation times and fuel costs. Though information technology has 

been involved in transportation since the 1950s (MDOT, 2005), ITS is believed to have the first 

complete frameset architecture when the Intermodal Surface Transportation Efficiency Act 

(ISTEA) of 1991 established the national Intelligent Vehicle Highway Systems (IVHS) program 

(National Transportation Library, 1991). While the use of advanced technologies in 

transportation has been ongoing for many years, the creation of the ITS program has accelerated 

the pace of innovation and integration of technologies into the transportation system. The ITS 

program has brought new players into the transportation arena with interests in the application of 

technologies previously developed for defense, space and other fields. 

  Recently, the United States Department of Transportation (U.S. DOT) recognized the ITS 

data archival situation and defined it as an urgent problem and began promoting the needs for 

federal and local level research programs addressing the archiving and multi-agency use of data 

generated from ITS applications (USDOT, 2009). The Archived Data User Service (ADUS) was 

then initiated as a joint effort between ITS America and USDOT to meet this data archiving 

requirement. ADUS’ vision is to “improve transportation decisions through the archiving and 

sharing of ITS generated data” (U.S. DOT ADUS, 2000). 

  ITS data collection technologies have generated massive amounts of data to improve 

transportation system performance. With the advent of the ADUS, more traffic management 

operators are considering the systematic retention of data generated by traffic monitoring 

devices. Numerous questions have been generated regarding ITS data storage and management. 

One of them, and probably the most intractable one, is the compression of ITS data. 

  The massive amount of ITS data has created obstacles for effective data storage, 

transmission and retrieval. Most of ITS field loop detectors or sensors collect traffic speed, 

volume, and occupancy data repeatedly at a relatively short time interval, such as 20 or 30 

seconds (Turner, 2001). Considering the huge numbers of detectors and their 24/7 continuous 

operation, with an exception for hardware failures, the data will flood into traffic management 
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centers’ (TMCs) database or data archival facilities at a staggering rate. Upon receiving and 

archiving the traffic data, TMCs will need to prepare data online for distance uses in that 

potential users do not necessarily work in these TMCs. Again, problems arise in massive data 

transmitting with limited internet band width. 

  For instance, from the 220 detectors located at the initial 26 miles of instrumented 

highways within the Texas Department of Transportation (TxDOT) TransGuide project, a total 

of 50-60 megabytes of traffic volume, speed, and occupancy data is gathered per day 

(TransGuide 2003). This is just the first phase of TransGuide. Currently, the TransGuide system 

covers 87 miles of San Antonio highways and the ultimate goal is to cover 289 miles of 

highways (TransGuide 2005). Therefore, it is believed that TransGuide ITS data will continue to 

increase to around 500 megabytes per day, or 15 gigabytes a month, which challenges the current 

computer ability in terms of storage, retrieval, and transmission. TransGuide archived the field 

data in the compressed text file (.z file) format and it can be decompressed by PKZip, WinZip, 

Solaris® COMPRESS or other equivalences in DOS, Windows, or UNIX environments. Two 

data sets are offered in these compressed files: the original data set has a 20-second interval, and 

the other one, derived from the original, has a 15-minute interval calculated on a two-minute 

running average. Current practices show that a compression ratio (the original file size divided 

by the compressed size) of 6:1 to 11:1 can be achieved (TxDOT 2009). 

  Another example (of what?)comes from Minnesota Department of Transportation 

(Mn/DOT), which manages a network of loop detectors from all metro freeways in and around 

the Twin Cities (Mn/DOT, 2009). Data is collected at a 30-second interval from about 4,000 loop 

detectors, seven days a week all year round. The collected data are packaged into a single zip 

(yyyymmdd.traffic) file on a daily basis and loaded into the University of Minnesota Duluth 

(UMD) ftp server from TMC. Similar to TransGuide, these files are also in a zip-compressed 

format and can be uncompressed using common unzipping software such as WinZip.  

  By these conventional data compression approaches, ITS data can be compressed at a 

particular rate around 8:1 (Cleary, 1990); therefore archival spaces and transmission times are 

saved.  However, new compression techniques are still needed for two reasons: 1) the 

conventional data compression approaches are lossless methods, which have a ‘ceiling’ 

compression rate according to Shannon’s Information Theory (Shannon, 1948). It is impossible 

to go any further than the information entropy; and 2) it is hard for the conventional data 
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compression approaches to offer various datasets for various different data requirements. For 

instance, ITS speed data are essential for both planning and incident detection. For the planning 

purpose, long-range data are required and an accuracy over 10 mph can be tolerated. However, 

for incident detection, engineers may only need speed data in a certain range of time period 

(several hours) but they cannot accept an error of even 5 mph. 

  Among the most effective methods on image and video compression, the wavelet 

compression algorithm presents prominent ability to compress almost any kind of signal data. A 

certain loss of quality being allowed, wavelet compression could reach the goal of storing data in 

as little space as possible, known as the lossy compression (Debra et al, 2005). The ITS data 

collected by various equipments are mostly in numeric format, that can be treated as a signal, and 

then wavelet compression techniques could apply. 

  The goal of this research is to propose an ITS compression approach that includes both 

conventional compression methods and wavelet decomposition technique. To achieve this goal, 

three objectives need to be reached: first, an ITS data compression framework needs to be 

established and the methodology needs to be explained in the framework; second, a software 

program needs to be developed to put the methodology into work; and finally, a case study needs 

to be carried out to evaluate the methodology and test the program.  
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CHAPTER 2 

LITERATURE REVIEW 

  In this chapter, a thorough literature review will be conducted on existing ITS data 

archival and compression practices. This chapter also intends to explore state-of-the art/practice 

on data compression techniques and applications. Wavelet compression applications, as the 

major technological tool of this study, will be examined in great detail. 

  Section 2.1 provides the practical scan of the current ITS data management and 

archiving. Section 2.2 introduces general data compression concept and mechanism. Section 2.3 

focuses on wavelet compression technique, including its principle and mechanism with in-depth 

analyses. Finally, Section 2.4 discusses the existing applications utilizing wavelet compression. 

2.1 Existing ITS Data Archival Practices 

  ITS applications and their sensors and detectors are potentially rich sources of data about 

transportation system performance and characteristics. Increasing deployment of ITS throughout 

the nation has brought an awareness that ITS data offer great promises for uses beyond the 

execution of ITS control strategies. Usually, ITS data refer to data that are typically collected by 

and/or generated for ITS applications. The most common data sources potentially available from 

ITS include (Liu et al., 2002): 

• Traffic Surveillance Data 

 - Representative data elements: vehicle volume, speed, travel time, classification, weight, 

and trajectories; 

• Traffic Control Data 

 - Representative data elements: time and location of traffic control actions (e.g., ramp 

metering, traffic signal control, lane control signals, message board content); 

• Incident and Emergency Management 

 - Representative data elements: location, cause, extent, time history, detection and 

clearance of roadway incident/emergency; 

• Public Transit Data 

- Representative data elements: transit vehicle boardings by time and location, vehicle 

trajectories, origins and destinations; 

• Crash Data 
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- Representative data elements: location, time, cause, death, injury and clearance; 

• Commercial Vehicle Operations Data 

– Representative data elements: cargo type, carrier, O/D, route and time; and 

• Environmental and Weather Data 

– Representative data elements: location, time, precipitation, temperature and wind 

conditions. 

  The common ITS data collected by TMCs or transportation agencies fall into the 

following categories: traffic volume, traffic speed, vehicle classification, traffic incidents, lane 

occupancy, road and weather conditions, and current & scheduled work zones (FHWA, 2005). 

The USDOT Freeway Management Survey and the Arterial Management Survey showed that all 

the data collected are not archived (USDOT, 2005). In both surveys, as can be seen in Figure 1 

and Figure 2, only 80% of collected ITS data have been archived. Volume data are the most 

popular collected and archived ITS data type according to this survey, the rest being speed, 

vehicle classification, incidents, and travel time respectively. 

 

Figure 1 ITS Data (Freeways) Collected vs. Archived. 

(Source: Office of Highway Policy Information, FHWA, 2005) 
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Figure 2 ITS Data (Arterials) Collected vs. Archived 

(Source: Office of Highway Policy Information, FHWA, 2005) 

   

  TMCs and transportation operations agencies are commonly the major groups for 

maintaining a data archive because they are responsible for saving their own data. Some 

operational workgroups only maintain recent data and transfer outdated data to other groups or 

locations for long-term storage or management. The ITS data are archived in a convenient 

compressed text format in most cases, but this format is neither easily accessible nor easy to use 

or analyze. These data archive managers are generally responsible for providing basic data 

archive functions such as performing quality control, ensuring data accessibility, providing 

information or documentation on data, providing software applications to analyze the data, etc. 

  Current ITS data archive approaches could vary from one transportation agency to 

another. For example, California Department of Transportation (Caltrans) has developed a 

Performance Measurement System (PeMS) which makes archived data and various data 

summaries available online (Dept of EE & CS, UC Berkeley, 2009). In Virginia, the Virginia 

Transportation Research Center stores statewide ITS data for both short-term and long-term use, 

and also takes the responsibility to distribute these data (USDOT 2009). In Washington, 

Washington DOT has developed analysis software and publishes an ITS data CD every three 

months (USDOT 2009). 

  As Zhang et al. stated in their research (2005), loop detectors data are also used to carry 

on vehicle type classification. The Washington State Department of Transportation (WSDOT) 

uses dual-loop detectors to measure vehicle lengths, and then they classify each detected vehicle 
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into one of four categories according to its length: passenger cars/light trucks, single unit trucks, 

double unit trucks, and triple unit trucks (WSDOT 2005).  

  These vehicle length data could be archived for multi purposes, such as a potential real-

time truck data source for freight movement studies, or transportation planning and traffic 

analysis modeling. 

  As a summary, Table 1 shows the current ITS data archiving practices in several major 

TMCs or DOTs: 
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Table 1 Overview of Current ITS Data Archiving Practices 

Location Agency Types of ITS Data 
Phoenix, Arizona Maricopa County DOT 

& Maricopa Association 
of Governments 

Loop detector data from freeways 
and arterials (plans underway to 
archive all “relevant” data used by 
the Traffic Operations Center) 

Los Angeles, California Caltrans Freeway loop detector data 
Orange County, California Caltrans Arterial loop detector data 
Berkeley, California 
(PeMS) 

Caltrans & PATH Freeway loop detector data 

Chicago, Illinois Illinois DOT Loop detector data from selected 
freeways 

Lexington, Kentucky NORPASS, Kentucky 
Transportation Center 

CVO (commercial vehicle 
operations) data, WIM (Weigh-in-
Motion) data 

Montgomery County, 
Maryland 

Montgomery County 
DOT & Maryland 
National Capital Park 
and Planning 
Commission 

Loop detector data from selected 
arterials 

Detroit, Michigan Michigan DOT Loop detector data from freeways 
Minneapolis-St Paul, 
Minnesota 

Minnesota DOT Loop detector data from freeways 

TRANSCOM, New 
York/New 
Jersey/Connecticut 

TRANSCOM Travel times derived from AVI-
equipped vehicles 

Houston, TX TRANSTAR Travel times derived from AVI-
equipped vehicles 

San Antonio, TX TransGuide Loop detector data from freeways, 
travel times derived from AVI-
equipped vehicles, and incident 
management data 

Seattle, WA Washington DOT Loop detector data from freeways 
Milwaukee, WI 
(MONITOR) 

Wisconsin DOT Freeway data collected by electronic 
detectors, closed circuit television 
cameras, ramp meters and variable 
messages signs 

 

  Traffic surveillance data are the primary type of data being archived. Since the study 

focused on data from TMCs, this result is not surprising. However, many transit systems that 

have deployed electronic fare payment and automatic vehicle location systems also routinely 

archive these data (including ridership counts by route segment and time of day, and station 

origin-destination patterns). 
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  Many existing TMCs are either currently archiving or plan to archive traffic surveillance 

data. However, archiving is often implemented on an informal basis with no storage guidelines 

or limited access capabilities (Liu, 2002). Most TMCs store the original raw data files; while 

only a few of them use some popular data compression software techniques to compress the 

collected data before archiving them. The commonly used compression software tools include 

Winzip, Gzip, and compress (FHWA, 2005). 

  The ITS data quality is also an important issue in traffic data archiving for various 

reasons such as communication failure or hardware error, data error or when an inaccuracy 

occurs. Therefore, quality control techniques for archived data should be carried out to 

encompass at least missing data, suspect or erroneous data, and inaccurate data. The key way of 

knowing erroneous data from inaccurate data is the plausibility of the data. Erroneous data 

values do not fall within expected ranges or meet established principles or rules, while inaccurate 

data values are systematically inaccurate but within the range of plausible values. Basic quality 

checks, based on minimum and maximum flow thresholds, are often used for the detection of 

erroneous data. Weijermars and Van Berkun’s research (2006) proposed quality checks 

methodology based on the principle of conservation. These quality checks are introduced for the 

detection of inaccurate data. The principle of conservation of vehicles implies that flow 

measurements have to be consistent between upstream and monitoring detectors within one 

intersection. Weijermars and Van Berkun (2006) argued that the quality checks based on the 

principle of conservation of vehicles are a useful addition to basic quality checks, since 95% of 

the invalid data detected by inconsistencies of flows between upstream and monitoring 

detectorswas not detected by the basic quality checks. 

2.2 ITS Data Collection Equipments 

  ITS Data are generally collected through the following three types of equipment: Road-

based Sensors, Closed Circuit Television (CCTV), and Vehicle Probes. 

  Road-based Sensors-- Mountedbeneath the road,loop detectors are the most frequently 

used road-based sensors. Loop detectors provide vehicle counts, speed, volume, and occupancy 

data. Travel times data can be obtained by identifying and matching vehicles between adjacent 

loop detectors. As powerful and convenient as they are, loop detectors are not always accurate 

and often are non-functional due to software, hardware, or communication problems. Quality 
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control, therefore, is a critical issue before the loop detector data have been used for any practical 

use. Similar to loop detectors, RADAR detectors also provide traffic counts and density. They 

are mounted on the side of the road, and one sensor can monitor several lanes of traffic. The third 

popular type of road-based sensors is video image detection systems. This is the only sensor type 

that can read license plates so that vehicles can be re-identified in order to estimate travel time. 

However, the accuracy of video image detection systems is often seriously decreased in case of 

traffic jams, bad weather conditions, or poor light surroundings (Middleton et al. 1999). 

  Closed Circuit Television-- Video cameras provide immediate, intuitive and 

comprehensive pictures of traffic conditions. They are extremely useful in incident detection and 

response management because the incident level can be easily identified through picture and 

video. However, providing communications between the cameras and TMCs can be costly. 

  Vehicle P --In Houston, most toll road users have their vehicles equipped with electronics 

toll tags which allow users to pay their toll fee automatically. At the same time, these toll tags 

enable the Houston TMC Transtar to calculate travel times if the same vehicle is read at two 

locations. Incidents can be detected quickly by an unexpected travel time drop. The toll tag 

equipped vehicles are also seen in San Antonio and on a limited basis in New York (Dahlgren, et 

al, 2002). Vehicles with cell phones, though in early development status, are expected to provide 

large amounts of low-cost travel time information. GPS-equipped vehicles also have the ability 

to send a signal to data collecting devices when they pass locations of interest. 

2.3 Data Compression 

  Data compression has been investigated in the field of digital communication for a long 

time. Generally, data compression techniques can be divided into two major families: the lossless 

and lossy compression (Nelson, 1995). 

2.3.1 Lossless Compression: 

  Lossless compression consists of the techniques guaranteed to generate an exact 

duplication of the input dataset after a compress/decompress cycle. Lossless compression is 

essentially a coding technique. There are many different kinds of coding algorithms, such as 

Huffman coding (Huffman, 1952), run-length coding (Storer, 1988), and arithmetic coding 

(Witten et al., 1987).  
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2.3.2 Lossy Compression: 

  Lossy data compression concedes a certain loss of accuracy in exchange for high 

compression ratio. Lossy compression proves effective when applied to digitized representations 

of analog phenomena. By their very nature, these representations are not perfect to begin with, so 

the idea of output and input not matching exactly is somewhat more acceptable. Most lossy 

compression techniques can be adjusted to different quality levels, gaining high accuracy in 

exchange for less effective compression. Lossless compression is a necessary component of 

every lossy compression approach. 

  Most of the lossy data compression algorithms follow similar methodology: the original 

data are mathematically transformed to a new domain in which they are better organized for data 

compression than in the normal spatial-temporal domain (Dahlgren et al, 2002). Therefore, the 

choice of mathematical transformation is crucial to the performance of compression algorithms.  

  JPEG--the Joint Photographic Experts Group works on a format for still pictures that also 

allows for compression. The JPEG format allows for lossy as well as lossless compression 

(Salomon et al, 2007). 

  MPEG--the Moving Picture Experts Group works on techniques for compressing moving 

image data. Moving images such as video frames are typically more difficult to compress than 

still images, because frames are related in time to their predecessors and successors as well, and 

good compression techniques must note and use this fact (Salomon et al, 2007). 

  Wavelet Compression--since the 1980s, the traditional study of digital signals based on 

Fourier transforms has been replaced by wavelet analysis. The "Haar wavelet" and similar ones 

are used as a basis for image analysis, compression, and regeneration (Salomon et al, 2007). 

  Scalar Quantization--in this technique, lossy compression is achieved by means of 

approximating the color values of pixels; for instance, in place of 256 shades of gray, which are 

unnecessary since the human eye can only distinguish 30 to 40, one can approximate the same 

image with just 32 or 64 shades of gray (Salomon et al, 2007). 

  Vector Quantization--in this technique, the compression technique works on an array of 

independent values, rather than on single pixel values (Salomon et al, 2007). 
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2.4 Wavelet Data Compression 

  Wavelet compression, which has recently started to become one of the most popular data 

compression techniques  (Salomon et al, 2007), is a form of data compression originally well 

suited for image compression (sometimes also video compression and audio compression). The 

goal is to store image data in as little space as possible in a file. A certain loss of quality is 

accepted (i.e. the compression is lossy). 

  Using a wavelet transform, the wavelet compression methods are better at representing 

transients, such as percussion sounds in audio, or high-frequency components in two-

dimensional images, for example an image of stars on a night sky. This means that the transient 

elements of a data signal can be represented by a smaller amount of information than would be 

the case if some other transforms, such as the more widespread discrete cosine transform, had 

been used. 

  As powerful and practical as it is, wavelet compression is not good for all kinds of data: 

transient signal characteristics mean good wavelet compression - smooth, periodic signals are 

better compressed by other methods (Salomon et al, 2007). ITS data can be well suited in this 

category because it is considerably smooth and periodic when we look at it in a long range, say, a 

week or a month. Wavelet compression has also been proven to be suitable for other 

transportation data, such as time-difference-of arrival data in emitter location finding (Yu et al, 

2008).  

  One big difference between wavelet transform and Fourier transform is how fast these 

transforms converge to a function. In the Fourier domain, all the elements of the basis are active 

for all time, i.e., they are non-local. Consequently, Fourier series converge very slowly when 

approximating a localized function (Cohen, 1992). Wavelet transform makes up for the 

deficiencies of Fourier transform. Wavelet basis function is a novel basis localizing in both time 

domain and frequency domain (Daubechies, 1992). Therefore, wavelet basis function can 

provide a good approximation for a localized function with only a few terms.  

  The compression features of a given wavelet basis are primarily linked to the relative 

scarceness of the wavelet domain representation for the signal. The notion behind compression is 

based on the concept that regular signal components can be accurately approximated using the 

following elements: a small number of approximation coefficients (at a suitably chosen level) 

and some of the detail coefficients (Misiti et al, 2001). 
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  The one-dimensional discrete wavelet compression starts with the multilevel 

decomposition of the original signal S (i.e., the original ITS data set before wavelet 

compression.). Figure 3 illustrates a 3-level wavelet decomposition and its coefficients’ storage.  

 

Figure 3 Approximation and Dfor a -evel Wavelet Decomposition 

Source: Matlab Wavelet Toolbox, Version 14 

   

  Three details (D1, D2, and D3) and one approximation A3 are shown in Figure 8 while 

compared with the original signal S. In the case of -level decomposition, the original signal S is 

currently represented by D1, D2, D3 and A3. Or: S= D1+D2+D3+A3.  The size of the 

approximation and the detail for each level is only half of the previous level, which is obviously 

illustrated in Figure 8. 

  The coefficients of all the components of a 3-level decomposition (that is, the third-level 

approximation and the first three levels of detail) are returned concatenated into the singular 

vector C, as is shown in the Figure 4.  
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Figure 4 Extracting and storing approximation and detail coefficients 

Source: Matlab Wavelet Toolbox, Version 14 

   

  Since the length of the coefficients for each level varies, the matrix is unevenly 

participated with cD1, which represents the coefficients of the detail for the first level of detail, 

being the longest, and cA3 as well as cD3, which represent the coefficients of the third level of 

approximation and detail, being the shortest. 
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Figure 5 Demo of 1-D Wavelet Decomposition on a Noised Sine Wave 

   

  Figure 5 shows a noised sine wave decomposed by Wavelet db3 at level 5. The 

approximation a5, together with 5 levels details ranging from d5 to d1, demonstrate the wavelet 

decomposition’s ability of extracting different frequency components from a given signal. The 

approximation a5 displays the trend of the signal, which is the lowest frequency part; while the 

details showed the “noise” – the higher frequency parts, d1 being the highest. 

 The mechanism of one-dimensional discrete wavelet decomposition is to set a threshold 

for each or all details. All values that are below the given threshold(s) are set as zeros. Coding 
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these zero value coefficients yields a better compression ratio of the signal. In the Section “Fine 

Tuning on Signal Details by AR Modeling” of this chapter, an effort will be made trying to 

replace the set-zero algorithm with an autoregressive model. 

 

Figure 6 Threshold with Retained Energy and Number of Zeros 

   

  Figure 6 shows the relationship between threshold selection, retained energy and number 

of zeros in the processed coefficients. As the threshold increases, the retained energy of the 

signal drops down, while the number of zeros, which reflects the compression ratio, grows up. A 

trade-off balance point being found, we could compress the signal, as well as maintain satisfying 

information that the signal carries. 

  The coefficient sets after thresholding, can be combined together to achieve the 

reconstructed signal Sr. Any difference between the reconstructed signal Sr and the original 

signal S is the distortion of the entire wavelet decomposition process. 
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2.5 Existing Applications on Wavelet Data Compression 

2.5.1 Wavelet/Scalar Quantization (WSQ) 

  The FBI has formulated national standards for digitization and compression of gray-scale 

finger print images (Klimenko et al, 2002). The compression algorithm for digitalized images is 

based on adaptive uniform scalar quantization of discrete wavelet transform sub-band 

decomposition, a technique referred to as the wavelet/scalar quantization method. The algorithm 

produces archival-quality images at compression ratios of around 15 to 1 and will allow the 

current database of paper fingerprint cards to be replaced by digital imagery (Klimenko et al, 

2002). The fingerprint database consists of around 200 million inked fingerprint cards to a digital 

electronic format. A single card contains 14 separate images. Digitization thus converts a single 

fingerprint card into about 10 megabytes of raster image data; this, coupled with the size of the 

FBI’s criminal fingerprint database, gives some indication of why image compression was 

deemed necessary. 

  Since lossless compression of gray-scale fingerprint images appears to be limited to 

compression ratios of less than 2:1, the FBI specified a lossy method utilizing a WSQ algorithm 

for the fingerprint image compression standard (Klimenko et al, 2002). The WSQ algorithm 

produces archival-quality images at compression ratios of about 15:1. The general structure of 

the compression standard is a specification of syntax for compressed image data and a 

specification of a “universal” decoder capable of reconstruction compressed images produced by 

any compliant encoder, as shown in the Figure 7. 



 

19 

 

Figure 7 Overview of the WSQ Algorithm  

(Source: A Lossless Compression of LIGO Data, Klimenko et al, 2002) 

 

Encoding consists of three main processes: discrete wavelet transform (DWT) 

decomposition, scalar quantization, and Huffman entropy coding. The WSQ decoder must, in 

turn, be capable of decoding these three processes and all variants of them that are allowed under 

the general Specification.  

The first step to compress the fingerprint images is to decompose them into 64 spatial 

frequency sub-bands using a two-channel perfect reconstruction multi-rate filter bank (PR MFB), 

implemented in two dimensions as a separable (or product) filter bank with up to five levels of 

cascade. A frequency-domain depiction of this decomposition is shown in Figure 8. Note the use 

of unequal bandwidths, with the low and midrange frequencies partitioned into very narrow 

bands. 
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Figure 8 Frequency Support of DWT Sub-bands in the WSQ Specification 

(Source: A Lossless Compression of LIGO Data, Klimenko et al, 2002) 

   

  The WSQ Specification allows for the potential use of different filters in different 

encoders to achieve the decomposition. In particular, the WSQ Specification allows for the use 

of any two-channel linear phase FIR filter bank with filters up to 32 taps long. This class of PR 

MFB’s divides up into two distinct groups: odd-length filter pairs, in which both impulse 

responses are symmetric about their center taps (the so-called “whole-sample symmetric,” or 

WS/WS, filter banks), and even length filter pairs, in which the low pass impulse response is 

symmetric and the high pass impulse response is anti-symmetric (the “half-sample 

symmetric/anti-symmetric,”, or HS/HA, filter banks) (Klimenko et al, 2002). 

2.5.2 LIGO Data Compression 

  LIGO is one of the most data-intensive projects. The expected total bit-rate is 15MB/s 

and the full two year LIGO data stream will yield about one petabyte (1000 terabytes, or 1015 

bytes) of data. The design of the data reduction procedures, which produce scientific data sets, is 

one of the important tasks of the LIGO data analysis. 
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  There are four levels of the data, ranging from the full interferometer data (Level 0) to 

whitened GW strain data (Level 3, 1/1000 of the full data stream) (Klimenko et al, 2000). The 

full data stream will be available for about 16 hours after acquisition, but will not be archived. 

The data will be processed to form the Archived Reduced Data Set (Level 1) that will be about 

1/10 of the full data stream. At these two stages of analysis, it is important to save all useful data 

with minimal losses. Thus, fast and efficient lossless data compression can be essential for the 

generation of the Archived Reduced Data Set. 

  The idea of using wavelets is to decompose data into components that can be fairly well 

described as a white Gaussian noise. In other words, wavelets are used to decorelate the data, 

which means the representation of data in wavelet domain is more compact than the original 

representation. A method is represented for the lossless data compression based on the lifting 

wavelet transform (LWT) that maps integers to integers. The wavelet transform works in 

combination with the random data compression (rdc) encoder that is optimized for compression 

of random Gaussian signals.  

  For lossless compression, an invertible wavelet transform that maps integers to integers is 

needed (Klimenko et al, 2000). Another requirement is to find the wavelet representation of the 

data quickly. For these reasons the biorthogonal lifting wavelet transform is used, which can map 

integers and allow switching between the original data and its wavelet representation in a time 

proportional to the size of the data. 

  The engineering run data collected in April 2000 has been used to test the different 

compression methods. Three encoders were compared: the gzip, eri and the rdc. The encoders 

were applied to the original data in time domain (TD) and to the decorrelated data. 

Differentiation, wavelet transform (NP=6) and wavelet binary tree transform (NP=6) are used to 

decorrelate data. The combination of wavelet + rdc shows better compression ratio than the other 

methods. Compared to the traditional differentiation + gzip method, the average compression 

ratio for 16kHz channels is better by  ∼  20% and for the 2kHz channels the improvement is  ∼  

30%. 



 

22 

 

 



 

23 

CHAPTER 3 

DESIGN OF STUDY 

  This chapter describes the design of study in this thesis, including framework and 

methodology, software program development, and case study. This study, initiated and funded 

by the Southwest Region University Transportation Center (SWUTC) project No. 167651, also 

responds to the needs of ADUS by focusing on developing an efficient ITS data compression 

system that allows efficient archiving and retrieval of large scaled data. 

3.1 Framework and Methodology 

  The first step is to establish the framework for the ITS data compression approach. Then, 

ITS data characteristics analyzed. The purpose of the analysis is to remove information 

redundancy and to convert the data to a format which is more suitable for compression. Next, 

wavelet compression will be applied on the new converted data. The compression process should 

make the balance between compression effect and data distortion by utilizing proper 

thresholding. To facilitate proper threshold selection, indices are to be created to quantify the 

data distortion and compression effect. Different wavelet forms and decomposition levels will be 

compared to identify the best wavelet combination for ITS data. After the first two steps of the 

compression process, the ITS data set are further compressed by available conventional 

compression tools, which will result an additional data size reduction. Finally the compressed 

data will be reconstructed. The reconstructed data should have no significant difference with the 

original ones. 

3.2 Software Program Development 

  A software program is to be developed and designed to carry out and formulate the steps 

of the framework. The basic function of the program is to compress and reconstruct given ITS 

data set by the proposed approach. Users should be able to input the ITS data file, select wavelet 

form and level, choose compression options, and obtain the results of compressed and 

reconstructed data. The program is to have graphic interface so that users have intuitive results of 

the compression. 
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3.3 Case Study and Results Evaluation 

  To evaluate the proposed compression approach and to test the program, a case study is 

needed. A proper data source needs to be identified as the test-bed for the case study. The 

collected data will be analyzed and redundancy will be removed. The processed data will then be 

compressed by the program and the results will be evaluated. A number of wavelet forms, levels, 

and compression options will be compared to achieve the best results. The proposed compression 

results will be compared with those from the traditional compression techniques and conclusions 

will be drawn. 
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CHAPTER 4 

RESULTS AND ANALYSIS 

4.1 ITS Data Characteristics Analysis 

  This research is to study ITS data compression. First,  existing data archives and 

management practices are summarized. Common ITS data collecting equipments and techniques 

are also discussed in this section. Finally, ITS data characteristics are presented and will indicate 

how these data will be used as signals.  

  The ITS data collected by various equipment are mostly in numeric format, which can be 

treated as a signal, and then signal compression techniques could apply. A typical ITS data file 

contains tens of thousands of lines, each line being with the same format. A line usually starts 

with date and time information then gives the detector location and name along with the 

measured values (See Figure 5). The date and time show at each record, and there is usually a 

fixed amount of time difference between one record and the next as the 16 or 17 seconds shown 

in Figure 5. The long detector name duplicates itself for each record as well. 

 

 

Figure 9 Extraction Numeric Values in a Typical ITS Data File 

 

   To extract the numerically measured values only for the data set in Figure 9, and to index 

the other redundant information (such as date, time and detector name) would not only have 

compressed the data set to some extent, but it would also have better represented the data set in 

the way that is similar to digital signals. 

4.2 Framework and Methodology 

  The proposed approach is designed to indisputably make full use of the existing 

conventional data compression techniques that are ready to use including the suitable data format 
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converting technique, coding techniques, WinZip, etc. In addition, the advanced wavelet 

decomposition based data compression technique is employed as a novel perfection. 

  This framework includes four major steps: Data Format Conversion, Wavelet 

Compression, Threshold Selection, and Further Compression and Reconstruction. The first two 

steps prepare the original data to proper format and the appropriate wavelet type is selected. Step 

3, Threshold Selection, makes trade-off between compression rate and data conservation rate. 

Thus, data requirement from different user groups can be met by adjusting the threshold value. 

Step 4 seeks data compression techniques other than wavelet to further increase the efficiency, 

and discusses methods by which the original data is reconstructed with minimum loss. The 

framework of this wavelet incorporated ITS data compression approach is constructed and 

illustrated in Figure 10.  
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Figure 10 Wavelet Incorporated ITS Data Compression Framework 

 

Step 1: Data Format Conversion 

  In the first step, the ITS data format will be analyzed carefully. All redundant data items 

(such as time, date, detector name, etc.,) are then eliminated, because they repeatedly occur on 

each data item and thus can be easily identified and reconstructed from either the file name or 

Data Format Analyzing 

Data Rearranging 

Data Format Converting 

Maintaining Major Information 

Using Wavelet Toolbox 

Constructing an Entire Software Package 

Further Compressing via Conventional Technique 

Output Compressed Data 

Reconstructing Data 

Step 2 Wavelet Compression

Step 3 Threshold Selection

Step 4 More Compression and Reconstruction

Constructing Three Compression Indexes 

Locating Feasible Range of Threshold 

Locating Best Threshold
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additional tiny marking files. This saves a large portion of space before any formal data 

compression. 

  Having investigated the ITS data characteristics, it is quite clear that these data could be 

compressed by traditional compression techniques. The basic idea is to reduce the file size by 

extracting and indexing the duplicate data items. Figure 6 is the demo showing how this is done. 

 

 

Figure 11 Compression by Indexing Duplicate Items 

 

  As can be seen in Figure 11, only the starting time for one detector is saved in the 

compressed text since the time for next record can be calculated by adding the same time period. 

For example, as shown in Figure 6, the starting time is 18:43:51 for detector L1-0010E-555.845, 

and the time interval is 20 seconds, thus the following 5 records were taken at time 18:43:51, 

18:44:11, 18:44:31, 18:44:51, and 18:45:11 respectively. Due to the accuracy of the detectors, 

the calculated time may not be exactly the record time by the detector. For example for detector 

L1-0010E-555.845, the fifth record occurred at 18:45:10, while the calculated time is 18:45:11. 

This issue could be addressed in the following way: 
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  For a day’s data, count the first data entry and last entry, and arrange a plan for the all 

middle data entries. For example, the first entry is at 00:00:01, and the last entry is at 11:50:20, 

therefore, there are a total of 42,620 seconds in this time period. If we have 2200 reported data 

entries, the time interval between two consecutive entries would be 42,620/2200 = 19.37 

seconds. Then, all the 2200 data entries can be distributed into the time period from 00:00:01 to 

11:50:20 every 19.37 second, and round up to the whole second. 

  After the preparation step, the ITS data are digitalized; that is to say, only the numbers 

are kept in chuck for the data; the rest, like the detector number, the date and time are indexed 

and could thus be temporarily not significant compared to the numbers. The following research, 

therefore, focuses on only the number values of the ITS data. After the compression, the non-

number data could be recovered in the reconstruction step. 

  The ITS data will be converted from “text” to “binary”, which takes much less space for 

significant space savings. 

Step 2: Wavelet Compression 

  In this step, the ITS data will be further compressed by the wavelet compression 

technique. The one-dimensional discrete wavelet transform is used to decompose the data into 

different levels. The approximation, as well as some part of the details, will be kept while other 

components will be marked as zero if they are beyond the thresholds. 

  The basic wavelet decomposition is conducted by using the wavelet toolbox in MATLAB 

(Mathworks, 2001). Proper wavelet form and decomposition levels need to be carefully selected 

and a program package developed. 

Step 3: Threshold Selection 

  The threshold is important in ensuring a relatively lower compression rate while keeping 

less distortion. A calculated index named “Retained Energy” (RE for short) is defined to control 

compression quality. Two other constructed indices are the “Number of Zeros” (NZ for short) 

and the “Reduced Ratio” (RR for short), and they serve as important parameters in determining 

thresholds. 

  Hard and Soft Thresholding The threshold selection is a critical issue in the process of 

wavelet decomposition. As aforementioned, higher thresholds lead to better compression ratio 
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and greater signal distortions, while lower thresholds keep more signal energy, but the 

compression rate usually is not satisfied. A well designed algorithm is indispensable for better 

locating the suitable threshold(s) for ITS data compression. 

  Hard thresholding and soft thresholding are two predominant thresholding schemes of 

wavelet decomposition. Hard thresholding sets any coefficient less than or equal to the threshold 

to zero on a given signal, while keeping the coefficient greater than the threshold unchanged. For 

this reason, hard thresholding is sometimes referred to as the “keep or kill” scheme. In pseudo 

code, hard thresholding can be expressed as following: 

For i = 1 to levels  

 if (coef[i] <= thresh) 

  coef[i] = 0.0; 

Next i 

  Soft thresholding also sets any coefficient less than or equal to the threshold to zero, as 

does hard thresholding. Besides, soft thresholding subtracts the threshold value from any 

coefficient that is greater than the threshold. Soft thresholding is commonly used if we expect the 

resulting signal to be smooth. It can be explained by the following pseudo code: 

For i = 1 to levels  

if (coef[i] <= thresh) 

 coef[i] = 0.0; 

else 

 coef[i] = coef[i] - thresh; 

Next i 

  The soft thresholding has been proven to be better suited for most wavelet de-noising 

applications because it produces smoother reconstructed signals. However, hard thresholding 

performs better in processing ITS data. First, hard thresholding is much more efficient than its 

soft counterpart, as its “keep or kill” method imposes calculation on only the coefficient values 

less than or equal to the threshold, compared to soft thresholding algorithm’s unavoidable 

calculation on every coefficient value. Second, the purpose of compressing ITS data is not to 
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make the signal smooth, but to keep the original signal shape as much as we can, as well as to 

minimize the compression rate. Soft threshold removes more information from the original 

signal, thus less retained energy – which will be discussed in greater detail in this section – can 

be kept. For the sake of conserving data information, hard thresholding is selected in the 

research. 

  Global or Level-dependent Thresholding When thresholding the coefficient details, 

two common approaches are usually applied on how to select threshold values between different 

levels. Global Thresholding is the quick and easy way to conduct the compression with less 

computational cost. Level-dependent thresholding, on the other hand, offers choices to manually 

select different thresholding values for each level of detail coefficients. In light of the complex 

characteristics and various purposes of the ITS data, it is most likely to take a series of trial-and-

error steps to decide the optimal threshold value, and even more, to decide the levels of details. 

In this case, the level-dependent threshold is technically impossible to deal with since 

comparisons between two sets of thresholding plans on the same date will be impossible due to 

the various thresholds imposed on different levels. The research thus adopts the global 

thresholding approach to conduct the ITS data compression. Figure 12 demonstrates the concept 

of global and level-dependent thresholding. 
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Figure 12 Global vs. Level-Dependent Thresholding 

 

  Three Compression Indexes It is needless to say that Performance Measurement (PM) 

is required to systematically assess progress made in threshold selection. As was mentioned in 

Step 3 of the decomposition framework, three compression indexes are defined as PM indicators 

to determine the thresholding value: the “Retained Energy” or RE; the “Number of Zeros” or 

NZ, and the “Reduced Ratio” or RR. 
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  According to signal processing theories, signals have energy. Energy of a signal can be 

understood as the signal’s “ability to work”. The energy sE of a continuous-time signal )(tx  is 

defined as the integration of the signal square on all time: 

 
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where N is the number of total signal sample points.  

  The Percentage of Retained Energy (RE) is to measure how much energy is retained in 

the compressed signal out of the original one. RE is measured in percentage as following: 
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where ncx is the compressed signal, and nrx is the original signal, or 
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where, cN  is the norm of the compressed signal, and rN  is the norm of the original signal. 

  The Number of Zeros (NZ) is used to measure the effect of the ITS data compression. 

The more zeros that occur in the final coefficients, the better result we have achieved. This is 

simply because the zeros are easy to get compressed in the final signal. NZ is the number of 

zeros in a given level of decomposition divided by the number of the total number of coefficients 

in this decomposition: 
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where, cZ  is the number of zeros of the current decomposition, sZ  is the number of 

coefficients. 

  The Reduced Ratio RR is designed to be defined as: 
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where, cB  is the size of original signal subtracted from the binary signal after wavelet 

compression at the particular threshold, and sB  is the size of the original binary signal before 

wavelet compression. 

  Among the three compression indexes, Retained Energy (RE) represents the congruency 

of the compressed signal with the original signal, or the reverse of the signal distortion; while the 

Number of Zeros NZ and the Reduced Ratio RR have similar physical meanings, both reflecting 

the compressed effects in size and related to each other. NZ is the performance measurement 

factor coming directly from the wavelet decomposition, therefore it could be used to evaluate the 

algorithm used; in contrast, RR puts more concern on how the final data size reduces from the 

original file size. 

  Balancing Compression Indices In order to construct a suitable algorithm for the 

balanced threshold, the varying of the three compression indices (RE, NZ, and RR) with the 

whole range of threshold for a typical set of ITS data is plotted in Figure 13. The data were the 

June 10, 2005, speed set from the detectors in San Antonio, TX downloaded from TransGuide 

server. While the following analysis uses this set of data as an illustration, the stated 

phenomenon and the resulted algorithm are suitable for the other ITS data sets that the authors 

have dealt with in this study. 
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Figure 13 Whole Range Scan of Thresholding for TransGuide One Day Speed Data 

 

  It can be seen from Figure 13 that the RE curve (Retained Energy) is decreasing with the 

increase of the threshold, meaning that greater thresholds will cause bigger energy losses and 

large distortions. However, the NZ curve (Number of Zero) and RR curve (Reduced Ratio) are 

increasing as the threshold goes up, meaning that smaller thresholds can maintain better (smaller) 

compression ratios. The NZ curve and the RR curve go in the same direction, though they are not 

parallel, especially when thresholds are small. 

  The threshold, when the RE curve and the NZ curve intersected each other. is called the 

“sparsity-norm balanced” threshold. The sparsity-norm balanced threshold is normally used as 

the global threshold for wavelet compression in many cases to get the trade-off between 

congruency and compression ratio. However, for the ITS data set, the signal distortion under the 

sparsity-norm balanced threshold is too high.  

  To further search for a better threshold that can provide less distortion, focus should be 

placed on the left hand side of the sparsity-norm balanced threshold since the retained energy is 
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decreasing with threshold. During this range, the NZ curve and the RR curve increase sharply 

when threshold is very small, then go up in a smaller, but still high slope. However, the NZ curve 

keeps a very high value and then drops down faster. 

  Figure 14 shows a close look of the RE curve when the threshold is less than the sparsity-

norm balanced value. It seems the RE curve in this period follows an exponential function, with 

a slow changing period and a rapid changing period. So, one of the feasible ways is to set the 

place where the RE curve changes from slow to rapid as the desired threshold. 
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Figure 14 Selection of the Proper Threshold by Proposed Algorithm 

 

  The RE curve during this period can be fitted by a kind of attenuation function in the 

form of a deformed exponential curve: 

 ( ) ss RE1RE100RE +







−⋅−=

−
τ

stt

e  (7) 

where, t  is the threshold variable; τ  is the parameter to be calibrated with the name as time 

constant; st  is the threshold at the sparsity-norm balanced point; and sRE  is the Retained Energy 

at st .  
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  To calibrate the parameterτ , Equation (7) can be transformed to: 

  
τ
−=








− stt

s

s

RE-100

RE-RE
1ln  (8) 

This equals to: 

 bXY =  (9) 

where, 







−

−=
s

s

RE100

RE-RE
1lnY  (10) 

 sttX −=  (11) 

and τ=1b    (12) 

  The calibration of parameter b in Equation (9) can follow any regular routine for the 

linear equation calibration. The inverse of b returns the parameter τ  in Equation (7). 

  According to the theory of signal system analysis, the slow change and the rapid change 

separate at (Marven 1996): 

 λ=
τ

− stt
 (13) 

where, λ  is normally between -2 and -3, which reflect the case when the fitted exponential curve 

increases from the very bottom point (at the sparsity-norm balanced point) to its exp(-2) = 

85.02%, and exp(-3) = 95.02% of the total height (from the sparsity-norm balanced point to the 

maximum RE point.)  

  The proper threshold pt
 and the corresponding Retained Energy pRE  can be determined 

on the RE curve from the following formula: 

 λτ+= sp tt  (14) 

 ( ) ( ) ssp RE1RE100RE +−×−= λe  (15) 

  Another way to determine the threshold position pt
, where the slow change and rapid 

change separate, is to set the exponential part as α : 

 α=λe  (16) 

with a typical range of α  setting as 15.005.0 ≤α≤ . In exponential functions, this range is 

usually considered the slope of the curve changes from slowly to rapidly. The physical meaning 



 

  38

of α  is the percentage that the exponential curve has dropped from the top maximum value in 

the threshold range starting from the smallest to the sparsity-norm balanced point. 

  The threshold pt
 in this case can be calculated based on (13) and (16): 

 α⋅τ+=λτ+= lnssp ttt  (17) 

  Then, pRE  can be more explicitly expressed as: 

 ( ) ( ) ssp RE1RE100RE +α−×−=  (18) 

  In summary, the algorithm of the proper threshold selection is listed as following: 

1. Calculate RE, NZ, and RC by changing the threshold within the whole 

range based on the wavelet compression technique, obtaining the whole 

range curves RE, NZ, and RC; 

2. Locate the sparsity-norm balanced point, which is the intersection between 

the RE curve and the NZ curve; 

3. Obtain the threshold ts and the RE value REs at the sparsity-norm balanced 

point; 

4. Calculate the RE value at the proper threshold pRE  using either Equation 

(15) or (18). If Equation (18) is used, parameter α  ( 15.005.0 ≤α≤ ) 

should be predefined; 

5. Trace the threshold value tp from Equation (14) or (17). 
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Figure 15 Comparison of Compression Results by Different Thresholding Methods 

 

  Figure 15 shows the original ITS signal and the reconstructed signals after wavelet 

compression under different thresholding methods. It is seen that the proposed thresholding 

algorithm presents the least distortion and acceptable compression ratio (in (d) of Figure 15) 

compared with the other thresholding methods in (b) and (c). 

Step 4: Further Compression and Reconstruction 

  The ITS data set, after the first three steps, is further compressed by the conventional data 

compression technique: WinZip. This consideration will engender a supplementary reduction of 

the size of data sets and attain the finally compressed version. 

  The finally compressed ITS data set will be stored or archived in TMCs, and transmitted 

to users as required. At the users’ ends, the compressed data sets will be reconstructed following 

the inverse actions as compression. The objective is that the reconstructed data sets should have 

no “significant” difference with the original ones. Or at least, the differences are within a range 

that the users can tolerate. 
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4.3 Software Program Development - WCID 

  A MATLAB GUI program with the name Wavelet Compression for ITS Data (WCID) 

was developed for this research. WCID well formulates the basic 4-step framework of the ITS 

data wavelet compression work by compressing raw ITS data in different thresholds, and make 

the threshold-norm-compressed-ratio picture. The inputs of the program are extracted ITS single 

variable data, such as speed. WCID accepts six options before compressing the data: wavelet 

form, wavelet level, threshold lower limit, threshold upper limit, threshold step value, and 

thresholding type. WCID can show two types of graph results. The first one is the 3-index result 

under a range of threshold, intending to help users to see how the performance measures change 

and to give an estimate of the optimal threshold value. This type of graph uses the x-axis as the 

threshold value, and the y-axis as the values of the three indexes, presented in percentages, as 

can be seen in Figure 16. The other type of graph shows the comparisons of the original signal 

and the reconstructed signal under the threshold value specified as the upper limit of threshold 

range. Users can have an intuitive picture of how much the signal distortions are under the given 

threshold value as shown on the graph in  Figure 17. The two types of graph can be toggled by 

simply clicking the “View Indexes” or “Comparing Signals” button. The WCID program is 

coded in MATLAB GUIDE resulting in two files: a fig file to store the interface and a MATLAB 

m file to store the code. The core WCID code can be found in Appendix A. 
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Figure 16 Compress the Sample Speed Data in WCID 
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Figure 17 Comparing the Original and Reconstructed Sample Speed Data in WCID 
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CHAPTER 5 

CASE STUDY AND RESULTS EVALUATION 

  In this thesis research, the San Antonio TransGuide (TxDOT, 2005) ITS data was 

selected to illustrate the proposed methodologies and the effectiveness of data compression. 

TransGuide is an ITS project designed by the San Antonio District of the Texas Department of 

Transportation (TxDOT). This TransGuide project offers traffic volume, speed, and occupancy 

data gathered from the initial 26 miles of instrumented highways. Figure 18 demonstrates 

TransGuide’s current traffic conditions map. 

 

 

 Figure 18 TransGuide Current Traffic Conditions Map 

(Source: TransGuide Website, Traffic Condition Map, 2006) 

   

  TransGuide offers two levels of data sets. The original data has a 20-second interval, and 

the other one, derived from the original, has a 15-minute interval calculated on a two-minute 

running average. This proposed research focuses on the original 20-socond data set. The 
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downloadable data contain the compressed text files (.z file) and can be decompressed by PKZip, 

WinZip, Solaris® COMPRESS or other equivalences in DOS, Windows, or UNIX 

environments. Current practices show that a compression ratio (the compressed data size divided 

by the original data size) of 7% to 15% (based on TransGuide’s 21 month’s data from June 2004 

to February, 2006) are reached. Table 2 demonstrates the size and compression ratio for these 10 

day’s data 

Table 2 TransGuide Data Archive Compression Ratio from 10-day Data Sample 

Date Original Data 
Size (KB) 

Unzipped Data 
Size (KB) 

Compression 
Ratio 

06/01/2005 6,134 51,451 11.92% 

06/02/2005 6,438 53,488 12.04% 

06/03/2005 6,582 54,450 12.09% 

06/04/2005 6,393 54,019 11.83% 

06/05/2005 6,158 53,639 11.48% 

06/06/2005 6,524 54,599 11.95% 

06/07/2005 6,550 54,854 11.94% 

06/08/2005 6,276 52,607 11.93% 

06/09/2005 5,764 48,538 11.88% 

06/10/2005 6,115 50,504 12.11% 

Total: 62,934 528,149 11.92% 

 

  The 20-second interval data were selected for this case study. The compression effects 

under each step in the framework were conducted one after another. During the third step 

threshold selection, the threshold of wavelet decomposition and the three composition indexes 

(RE, NZ and RR) were examined, and the optimal threshold was selected based on the proposed 

algorithm. TransGuide started gathering these ITS lane data from late 2003 on its eight data 

collecting servers numbering 0 to 7. Each server works separately and generates a data file each 

day. The data collection had some ups and downs in the early stages, as TransGuide does not 

have all data files for all servers. It was not until December 2004 that all servers started working 

on a reliable basis and all eight data files were available for each day. Over 100 data files were 

analyzed by WCID and three scenarios were selected to demonstrate the performance of WCID. 

The three scenarios include a single-day-all-detector case (June 10, 2005), a 10-day-single-

detector case (June 1-10, 2005), and a 10-day-all-detector case. 
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5.1 Data Description 

  The retrieved traffic variables include speed, volume and occupancy. The sizes of the 

data file currently zipped on the TransGuide server are normally around six megabytes per server 

per day with the unzipped original file size about 50 megabytes. The total zipped size for the 10 

day’s ITS data is 61.4 megabytes (515 megabytes for decompressed ‘raw-text’ files.) 

  In the originally decompressed file, the TransGuide ITS lane data were arranged in the 

following form:  

06/10/2005 00:00:42 L2-0010E-557.394        Speed=65 Vol=003 Occ=001 
06/10/2005 00:00:42 L2-0010W-557.358       Speed=70 Vol=008 Occ=003 
06/10/2005 00:00:42 L3-0010E-557.394        Speed=61 Vol=006 Occ=003 
06/10/2005 00:00:42 L3-0010W-557.358       Speed=67 Vol=013 Occ=005 
06/10/2005 00:00:42 L4-0010E-557.394       Speed=53 Vol=002 Occ=001 
06/10/2005 00:00:43 EN1-0010W-557.926   Speed=-1 Vol=009 Occ=004 
 

  For the sake of indexing, these data need to be put in an order in which the entries are 

logical and the traffic trend is easy to observe. After sorting the data first by detector name, then 

by time, the reformatted data file looks like this: 

06/10/2005 23:59:05 L1-0010E-559.873    Speed=73 Vol=001 Occ=001 
06/10/2005 23:59:24 L1-0010E-559.873    Speed=00 Vol=000 Occ=000 
06/10/2005 23:59:44 L1-0010E-559.873    Speed=71 Vol=001 Occ=001 
06/10/2005 00:00:44 L1-0010E-560.424    Speed=64 Vol=003 Occ=001 
06/10/2005 00:00:55 L1-0010E-560.424    Speed=00 Vol=000 Occ=000 
06/10/2005 00:01:15 L1-0010E-560.424    Speed=00 Vol=000 Occ=000 

5.2 Data Compression on a Typical Day 

  The compression of ITS data, including all three variables- speed, volume and 

occupancy, was conducted on the June 10, 2005 data. As the sampling interval was 20 seconds, 

there were a total of 9200,000 pairs of records obtained for that singular day, taking a space of 

51,715,560 bytes. After compression by TransGuide, the compressed size was: 6,261,413 bytes 

with a compression ratio of 12.11%. 

  The first step of the compression process was to rearrange the data format in order to 

reduce redundancy. Information concerning the redundancies was recorded in the extra tiny-size 

file for the purpose of future decompression. Only the detected values of speed, volume and 

occupancy were used for further compressions. With this arrangement, the file size was reduced 

to 11,138,730 bytes, with a compression ratio of 21.53%. 
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  The next step was to convert the file into binary format by using the designed MATLAB 

program. The file size was sharply reduced to 1,083,943 bytes by this simple action. To this 

point, the file size was 2.10% of the original raw data file. If the Winzip under the best effects 

was applied, the file size could further be reduced to 1,082,783, which would be only 2.09% of 

the original size. This was the best compression ratio we could reach before the wavelet 

compression technique was applied. 

  Next, the wavelet compression stated as Step 2 and  Step 3 in the framework in Figure 7 

was initiated for better compression ratios. The data sets used for wavelet compression were the 

one after binary format converting to the size 1,083,943 bytes. 

  By using the proposed method in the previous sections, the three compression indexes 

Retained Energy (RE), Number of Zeros (NZ) and Reduced Ratio (RR) were established and 

used for locating the proper threshold for wavelet compression. A number of wavelet forms and 

levels were tried for the compression. As a result Haar with decomposition level 4 was selected 

as the optimal settings. 

  Figure 19 illustrates the original ITS data and the reconstructed data from wavelet 

compression. The three traffic variables were listed separately and the associated compression 

indexes were listed at the right of the plots.  
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Figure 19 Reconstructed and Original Data, Compressed by Haar, Level 4 

 

  The optimized threshold that was used for the compression was 24.6, 3.4 and 3.9 for 

speed, volume and occupancy, respectively; while the Retained Energy was 99.3%, 94.5% and 

94.5%, respectively; the Number of Zeros NZ was 83.1%, 86.0% and 84.7%, respectively. 

Figure 20-22 shows the performance measurement indexes for speed, volume, and occupancy on 

the given June 10, 2005 data respectively. 
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Figure 20 Performance Measurement Indexes for June 10, 2005 Speed Data 
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Figure 21 Performance Measurement Indexes for June 10, 2005 Volume  

Data 
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Figure 22 Performance Measurement Indexes for June 10, 2005 Occupancy Data 

 

  The entire compression ratio in this step (for wavelet compression) was 48.6% (more 

than half) with the wavelet compressed file size being 530,048 bytes. The compression ratio to 

the original data size was 1.02%. 

  The wavelet compressed ITS data were zipped by the Winzip with the best effects. The 

file size after Winzip became 506,014 bytes. This was the final compressed file size for the entire 

compression process. 

  Table 3 lists the detailed file size reduction during the entire decomposition. It can be 

seen that TransGuide compressed this set of ITS data in a ratio of 12.11%; while by the proposed 

method, the total compression ratio became 0.98%, which is only approximately 8.09% of what 

TransGuide did. Within this process, the wavelet part compressed almost more than half (100%-

48.6%=51.4%) of its own inputs. 
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Table 3 Compression Ratios under Different Steps by TransGuide and by Proposed 
Method  

Data Source: June 10, 2005, Server0 lanedata, TransGuide 

 

 

Comparisons between the proposed approach and other ITS data compression methods 

are hard to make because of the low availability of other methods. However, the approach has 

not achieved better compression ratio compared with wavelet applications in the image 

processing area. For instance, the FBI fingerprint compression utilizes WSQ algorithm which is 

able to produce archival-quality images at compression ratios of about 15:1. In our approach, the 

wavelet compression step can achieve only roughly 2:1 by itself. This is because the WSQ is 

applied on images on which the users allow much higher distortion rates. 

5.3 Data Compression on a Selected Detector Data for a Whole Month 

  One of the most distinguishing characteristics of traffic data is that it is recursively 

repeated. If a single detector is studied for a period of consecutive days, the trend will be easily 

identified: it has the morning peaks and afternoon peaks, and traffic is usually low at nights. It is 

necessary to take advantage of this well-regulated characteristic especially for transportation 

planners. For this reason, a selected month, June 2005, was studied to show how the proposed 

data compression approach could be used on the long-range. 

Compression Results Size(Bytes) Reduced Size 
Compression 

Rate 
From TransGuide 

Raw Text Data 51,715,560 0 100.00% 
Raw Text Data Compressed by Gzip 6,261,413 45,454,147 12.11% 

 
Based on the proposed method and algorithm 

Raw Text Data 51,715,560 0 100.00% 
Speed + Vol + Occ Text 11,138,730 40,576,830 21.54% 
Speed + Vol + Occ Binary 1,083,943 50,631,617 2.10% 
[Speed + Vol + Occ Binary +Winzip] [1,082,783] [50,632,777] [2.09%] 
Speed + Vol + Occ 1-D DWT Haar 
Level 4  

530,048 51,185,512 1.02% 

Speed + Vol + Occ 1-D DWT Haar 
Level 4 + WinZip 

506,014 51,209,546 0.98% 
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  Thirty zipped data files were obtained from TransGuide data server, each for a server 

(server 0) a day. The total original file size for the entire month ITS data is 187,482,782 bytes, 

and 1,584,447,236 bytes after decompression. A well-functioned detector with the ID L1-0010E-

560.917 was selected to study. The name of the detector indicates that it is on the first lane of the 

interstate freeway I-10 East at the section with a milepost of 560.917. During the entire month, 

this detector had 125,216 records, an average of 4174 records per day, or a record per 20.7 

seconds. That indicated, this detector had very little “missed” counts.  

 

Figure 23 One Month's Volume Data Before and After Compression (June 2005) 

 

  Figure 23 shows the wavelet compression volume data comparison with wavelet form 

db3, level 3. At threshold value 5, the compression can achieve a Reduced Ratio (RR) as high as 

64.8%; however, the reconstructed signal keeps the same trend with the original data. Clearly 

seen are the 30 bumps in the reconstructed signal, each bump with two peaks, representing the 
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morning and afternoon peak hours. Even the only two abnormal over-50 records were well 

retained, although they may most likely be erroneous items. 

 

Figure 24 Performance Measurement Indexes for a Month’s Speed Data (June 2005). 

 

  In Figure 24, the three performance measurement indexes were plotted with different 

markers. Even for the whole month’s data, the trends of NZ, RE, and RR were still similar to 

those for the data form of a single day. This is important as the proposed threshold selection 

algorithm in previous sections was based on the recognition of the trends of NZ, RE and RR as 

illustrated in Figure 14. If the trends vary with days or the combinations of data sets, then the 

threshold selection algorithm should be modified. 

  Fortunately, the trends of the three compression indexes related to the threshold remained 

the same not only for a singer day from all detectors in San Antonio, but also for a combination 
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of ten days’ data from one singular detector. These trends increase the confidence level of the 

threshold selection algorithm. 

5.4 Comparison of Different Ratio, Wavelet Forms and Levels 

  To test the impact of different wavelet forms and levels on the data compression, the data 

from June 2005 were compressed using the proposed method, all the thresholds for wavelet 

compression were based on the proposed algorithm. This means all compressions were balanced 

between compression ratios and distortions.  

  The entire compression ratios for the month’s data including all steps in the compression 

framework were retrieved and plotted in Figure 25. For comparison purposes, the corresponding 

compression ratios by the current TransGuide practice were shown in the same figure as well. 

 

 

Figure 25 Compression Ratios Comparison between Current Practice and the Proposed 
Approach 

Data are from June 2005, TransGuide Lanedata 
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  Evidently, the overall compression ratios for the proposed method were much smaller 

(about 8.1%) than the ones by TransGuide. This means the ITS data can be 91.9% more 

compressed which will not only save a large space, but increase greatly the transmission rates. 

Impact of Wavelet Forms and Decomposition Levels 

  In order to test the impacts of different selections of wavelet forms and the decomposition 

levels to the compression ratio, the popular wavelet forms were applied to the compression of the 

whole day speed data on June 10, 2005, and several typical wavelet forms were selected to 

present in this paper. The candidate decomposition levels were 2, 4, and 6, while the selected 

wavelet forms used for testing were db2, db3, db6, Haar, and sym3. The thresholds were 

determined using the proposed method and algorithm. The three indexes (RE, NZ, and RR) and 

the compression ratios were compared in Table 4 under five wavelet forms and under three 

decomposition levels. 
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Table 4 Three Indexes and Compression Ration (CR) under Different Wavelets 

Wavelet  form Level RE* NZ* RR* CR* 

Db2 

2 99.20% 67.40% 29.80% 70.20% 
4 98.90% 83.40% 47.00% 53.00% 
6 98.80% 87.40% 52.50% 47.50% 

Db3 

2 99.00% 67.40% 29.00% 71.00% 
4 98.70% 83.70% 46.80% 53.20% 

6 98.60% 87.80% 52.30% 47.70% 

Db6 

2 98.90% 67.60% 28.20% 71.80% 
4 98.50% 84.00% 46.60% 53.40% 

6 98.40% 88.10% 52.10% 47.90% 

Haar 

2 99.70% 67.60% 33.60% 66.40% 

4 99.30% 83.20% 48.40% 51.60% 

6 99.20% 87.30% 53.70% 46.30% 

Sym3 

2 99.00% 67.50% 29.00% 71.00% 
4 98.70% 83.70% 46.80% 53.20% 
6 98.60% 87.80% 52.30% 47.70% 

Note:  Data used for tests were the one day speeds of all detectors on June 10, 2005; 

 The thresholds were based on the proposed algorithm; 

 NZ – number of zeros; RE – Retained Energy; RR – Reduced Ration; 

 CR – Compression Ratio.  

 

  Table 5 presents the statistical analysis results of all the forms and levels. From Table 4 

and Table 5, it is seen that there are only slight changes of compression ratios and the three 

indexes for different wavelet forms. For example, the wavelet form db6 gives the maximum 

average compression ratio (57.70%), while Haar the minimum (54.77%) This is why Haar is 

employed in the previous analysis. By the way, for all cases, the Retained Energy (REs) remain 

very high in value (all >98%), which implies less energy loss. 
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Table 5 Statistical Analysis Results 

Comparison index 
RE* NZ* RR* CR* 

Average Stdev Average Stdev Average Stdev Average Stdev 

Wavelet forms 

db2 98.97% 0.21% 79.40% 10.58% 43.10% 11.84% 56.90% 11.84%
db3 98.77% 0.21% 79.63% 10.79% 42.70% 12.18% 57.30% 12.18%
db6 98.60% 0.26% 79.90% 10.85% 42.30% 12.52% 57.70% 12.52%
Haar 99.40% 0.26% 79.37% 10.39% 45.23% 10.42% 54.77% 10.42%

Sym3 98.77% 0.21% 79.67% 10.73% 42.70% 12.18% 57.30% 12.18%

Decomposition 
levels 

2 99.16% 0.10% 67.50% 0.44% 29.92% 2.13% 70.08% 2.13%
4 98.82% 0.31% 83.60% 0.42% 47.12% 0.73% 52.88% 0.73%
6 98.72% 0.33% 87.68% 0.42% 52.58% 0.64% 47.42% 0.64%

Note:  Data used for tests were one day speeds of all detectors on June 10, 2005; 

 The thresholds were based on the proposed algorithm; 

 NZ – number of zeros; RE – Retained Energy; RR – Reduced Ration; 

 CR – Compression Ratio.  

 

  Big differences between each decomposition level for any chosen wavelet form can also 

be observed in Table 4 and Table 5. The increase of decomposition levels yield a higher RR, a 

slight decrease of RE, and the increase of NZ and RR. For example, the overall average 

compression ratio for Level 2 is 70.08% (with the standard deviation as 2.13%,) while the overall 

average compression ratio for Levels 4 and 6 are 52.88%, and 47.42%, respectively. Both the 

standard deviations of compression ratios for Levels 4 and 6 are much smaller (0.73% and 

0.64%, respectively.) 

  These results suggest that the selections of decomposition levels are very important. If 

possible, higher decomposition levels are recommended. As the differences of decomposition 

ratios between Level 6 and Level 4 are smaller than the differences between Level 4 and Level 2, 

probably Level 4 is enough for most of the wavelet forms. This is especially true for Haar as the 

difference between Levels 6 and 4 are only 5.5%, which is much smaller than the difference 

between Level 4 and Level 2 (17.8%.) So Haar with Level 4 or Level 6 is the most recommended 

selection based on the compared pool. 
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5.5 Added Benefit for Wavelet Compression 

  The nature of the proposed wavelet compression is similar to the nature of signal de-

noising; as a result, the compressed ITS data have the de-noised effect on it. That is to say, the 

“trend” part of the signal is retained, while the noises (basically random abrupt values in a series 

of smooth data values) are more or less removed. This might not be the desired effect in traffic 

incident detecting or transportation operation studies, but urban planners would find it helpful 

because the short-time fluctuations and the random factors are well removed. 

  Another benefit brought by the proposed wavelet compression is traffic forecasting. 

Wavelet compression is a form of predictive compression which can be used to estimate the 

amount of noise in the data set, relative to the predictive function. If a high degree of 

compression is achieved, then the wavelet algorithm closely approximated the original data set, 

leaving only small residual values. Turning this around, wavelet compression can be used to 

estimate the degree of determinism in given traffic data. In other words, it can be told which 

detector’s data is more predictable by comparing the data from one detector to another. It could 

help in selecting detectors’ locations for the traffic forecasting process. 

5.6 Fine Tuning on Signal Details by AR Modeling 

  The proposed approach achieves data compression by setting the detail levels of the 

signal to zero where the coefficients of a decomposed signal fall below the pre-set ‘threshold’. 

We can further tune up this algorithm by modeling the ‘truncated’ signal so the quality of 

reconstructed data can be improved with a minor overhead of saving only a few parameters. 

  The characteristics of ITS data determine that the detail level data is likely to have the 

same amplitude and standard deviation, thus is likely to be stationary. The detail level data does 

not have seasonality (periodic fluctuations) either. Having met these two conditions, the detailed 

data after wavelet decomposition could be analyzed and simulated by Autoregressive (AR) 

Model. 

  AR Model is usually used in linear prediction formulas that attempt to predict an output 

x[n] of a system based on the previous outputs (x[n-1], x[n-2]...) and inputs (t[n], t[n-1], t[n-

2]...). In our case, there is no input because the decomposed ITS signal details that we are trying 

to model are scalar time series data, therefore the goal is to estimate the model so that it best fits 

the data.  
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  Various approaches allow us to choose an algorithm from a group of several popular 

techniques for computing the AR model (Ljung, 2001). The widely used algorithms include the 

forward-backward approach, the least squares approach, the Yule-Walker approach, Burg's 

lattice-based method, and the geometric lattice approach. In the forward-backward approach, the 

sum of a least squares criterion for a forward model and the analogous criterion for a time-

reversed model is minimized. In the least squares approach, the standard sum of squared forward 

prediction errors is minimized. In the least squares approach, the standard sum of squared 

forward prediction errors is minimized. The Yule-Walker equations, formed from sample co-

variances, are solved for the Yule-Walker approach. The lattice filter equations are solved using 

the harmonic mean of forward and backward squared prediction errors for the Burg's lattice-

based method. Finally, the geometric lattice approach is similar to Burg's method, except the 

geometric mean is used instead of the harmonic one. A detailed introduction of autoregressive 

algorithms can be found in (Ljung 1994). In this section, a comparison on algorithms has been 

made in order to determine the method that best fits. 

  The algorithm comparison computes the output yh  that results when the AR model m is 

simulated. The percentage of the output variation  is explained by the formula, 

 
mean(y))-norm(y

y) -norm(yh  - 1
100 fit ×=  (19) 

  The occupancy data were selected to carry out the comparison. First, as a typical day, the 

occupancy data on June 1st, 2005 was decomposed with Haar Wavelet Level 3. Then, 200 data 

points from the third level detail was selected as the basic dataset to run the comparison on the 

model order of 40. This third level of detail has very small values so nearly all of the data points 

fall within the threshold and thus will be set to zeros in our proposed wavelet compression 

approach. For each autoregressive method, the measured output (real data) and the model 

predicted output were plotted in a figure and the fit was calculated. 
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Figure 26 The Autoregressive Model Algorithm Comparison 

 (Based on June 1st 2005 Occupancy Data, Harr Wavlet  
Decomposition Level 3, 3rd Level Detail) 
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As can be seen from Figure 26, the Least Squares method has the highest fit 23.26%, 

while the lowest fit results were from the Yule-Walker approach, which gives a 21.19% fit level. 

Least Squares method is thus selected to conduct the autoregressive modeling for this research. 

The notation AR(p) refers to the autoregressive model of order p, it can be written 

 t

p

i
itit XcX εφ

=
− ++=

1

 (20) 

where, 1φ  … pφ  are the parameters of the model, c is a constant and tε  is an error term added to 

the model. 

  The constant c can be omitted by a careful model designing process, so the formula could 

be rewritten as 

 ( ) ( ) ttXqA ε=  (21) 

where, ( )qA  is 
=

−−
p

i
iti X

1

1 φ . 

  Now, the goal is to estimate the order q  and the AR coefficients ( )qA  so as to meet the 

criterion: to minimize tε , by the preset algorithm. 

  The best fit model order q  is found by calculating and comparing the Level 2 Norm 

Ratio (also called Retained Energy), namely, the Level 2 Norm Ratio of the reconstructed detail 

signal to the original one. This Level 2 norm value for a one-dimensional signal can be written 

as: 

 =
x

xxNorm 2)(  (22) 

  Thus, the Level 2 Norm Ratio can be expressed as: 

 
( )

( )originalnorm

edreconstrutnorm
NormRatioLevel ×=1002  (23) 

  It is clear that the goal is to make the Level 2 Norm Ratio as big as possible (as close to 

100 as possible) so that we get better compression with the model order evaluation algorithm 

being given. By plotting the Level 2 Norm Ratio, it is found that the increase of Retained Energy 

slows down dramatically after a certain model order. This order is then chosen to be our model 

order; orders higher will not give any appreciable increase in the retained energy while 

increasing the number of AR coefficients (or reflection coefficients) to be archived. The Level 2 
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Norm Ratio (Ratained Energy) as a function of q  (model order) is shown in the following 

graph: 

 

 

Figure 27 The Variance of the Residual Changes vs. Autoregressive Model Order  

(Based on June 1st 2005 Occupancy data, Harr Wavlet Decomposition  
Level 3, 3rd level detail) 

 

  As Figure 27 shows, an order of 11 would be enough and increasing the order doesn’t 

change the ratio percentages unless for very high orders. 

  After using AR Model to simulate the selected section of data signal, another problem 

occurred on how to properly divide the data signal into sections so that the AR Model could be 

used on each section. Periodogram has been used in time series analysis to provide a check on 

the randomness of a series, where we consider the possibility that periodic components of 

unknown frequency may remain in the series (Box and etc, 1994). The representation of 
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periodogram is used to determine periodicities in the give signal data sets, thus periodogram 

could be utilized to break the signal down into sections according to the periodicity 

characteristics. The periodogram for a sequence [x1, …, xn] is given by the following formula: 

  (22) 

  This expression forms an estimate of the power spectral density (PSD) of the signal 

defined by the sequence [x1, …, xn]. By this approach, the data signal that may not be stationary 

in general is to be divided into stationary segments with different lengths. This is called adaptive 

segmentation; and how to find the boundaries for that segmentation is beyond the scope of this 

thesis. The other method, which is simpler, is to divide the signal into fixed length short-duration 

segments and calculate the FFT of each segment and show them in spectrogram. In this 

technique, the duration of the segments must be short enough to ensure that the signal remains 

stationary within that duration. The fixed length segments method is used in this thesis to divide 

the signals, then each segment is simulated by the aforementioned AR Modeling. 

  To have a comparison of the compression effect before and after AR Modeling, the June 

10th, 2005 TransGuide occupancy data was once again selected. These data were first 

decomposed by Haar Level 4. Earlier we did the threshold and reconstruction and then all four 

levels of details were AR modeled and reconstructed again. 
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Figure 28 Performance Indexes Comparison Before and After AR Modeling 

Note: Data from June 10, 2005 Speed Data 

 

  Figure 28 illustrates the changes of performance indexes before and after AR Modeling. 

It is very clear that a better Retained Energy can be achieved with the cost of only a small 

decrease of Reduced Ratio. As can be seen from Figure 28, the Retained Energy was improved 

by around five percent, while the Reduced Ratio was down by only 2 percent.



 

  65

CHAPTER 6 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

  In this research, the wavelet incorporated ITS data compression method has been 

proposed, and then a MATLAB GUI program with the name WCID has been developed to 

facilitate the compression tests; finally a case study on TransGuide ITS data was put into play 

and a final compression ratio of less than one percent on the trade-off threshold value shows that 

the proposed approach is practical.  

  Since the desired wavelet compression is a lossy algorithm, the balancing between the 

compression ratio and the signal distortion is exceedingly important. During the compression 

process, the determination of the threshold is the key issue that affects both the compression ratio 

and the signal distortion. 

  In this research, an algorithm is proposed that can properly select the threshold by 

balancing the two contradicted aspects. Three performance indexes RE, NZ and RR are 

constructed and the relationships between the three indices and the threshold are identified. 

  Impact analysis of wavelet forms and decomposition levels to the compression ratios 

shows that there is not too much difference in the selection of wavelet form. Wavelet form Haar 

can provide a relatively smaller compression ratio. However, decomposition levels have 

significant impact on the decomposition. Higher decomposition levels normally yield better 

compression ratios for the same threshold values. 

  Finally, the threshold selection algorithm can be further tuned utilizing the 

Autoregressive model so that the quality of reconstructed data can be improved with a minor 

overhead saving of only a few parameters. After comparison between several methods, Least 

Squares method is selected for the Autoregressive model. The case study indicates that a better 

Retained Energy can be achieved with the cost of only a small decrease of Reduced Ratio. 

6.2 Recommendations 

  Data multiform is crucial for this wavelet incorporated ITS data compression research 

study. This is because TMCs are currently using incompatible data formats in storing the 
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collected ITS data. The traffic data variables, the layout of lines and columns in the data file, and 

the time interval differ from one TMC to another. Future study should test data sets from a 

various number of TMCs.  

  ITS data quality control could be incorporated in the wavelet compression approach. 

During the research, it is found that the result of the compressed ITS data have the de-noised 

effect due to the nature of the proposed wavelet compression which is similar to signal de-

noising. The “trend” part of the signal are retained, while the abnormal data, usually treated as 

noise in wavelet decomposition, are more or less removed from the result. Considering these 

abnormal data are usually erroneous or inaccurate measurements, data quality control could be 

well included by recalculating those data in the wavelet decomposition. 

  Finally, it is recommended that the compression processing speed should also be taken 

into consideration in order to meet the need of the increasingly surging ITS data. With more 

highway infrastructure put into use, the ITS data increase rate becomes overwhelming. A 

practical solution on ITS data compression must run faster on prevalent computers than the data-

generating speed to be feasible. 
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